Set Notation

Symbols

<i>n</i> (A)	Cardinal number of set A	∉	Not an element
Α'	Complement of set A	⊈	Not a subset
E	Element	C	Proper Subset
Ø = { }	Empty set or Null set	⊆	Subset
A = B	Equal sets	I.	Such that
$n(\mathbf{A}) = n(\mathbf{B})$	Equivalent sets	U	Union
Ω	Intersection	U	Universal set
N	Natural numbers		

Definitions

- Cardinal numbers: number of distinct elements in a set o
 Example: A = {1, 3, 5, 7} n(A) = 4
- Complement of set A: set of all elements in the universal set that are not in A o Example: U = {1, 2, 3, 4, 5}, A = {1, 3, 5}
 A' = (2, 4}
- **Disjoint sets**: two sets that have **no elements in common** \circ Example: A = {1, 3, 5, 7}, and B = {2, 4, 6, 8} are disjoint sets
- Element: objects in a set Example: A = {1, 2, 3, 4}
 1∈A, 2∈A, 3∈A, 4∈A
- □ Empty set (Null set): set that contains no elements Example: Ø = { }

M-S1

- Equal sets: two sets that contain exactly the same elements o Example: A = {2, 3, 4, 5}, B = {2, 3, 4, 5}
 A = B
- Equivalent sets: two sets that contain the same number of elements o Example: A = {1, 2, 3}, B = {2, 3, 4} n(A) = n(B)
- Finite sets: sets whose cardinality is a whole number o
 Example: A = {3, 5, 7, 9, 11}
 n(A) = 5
- Infinite sets: sets whose cardinality is infinite Example: A = {1, 2, 3, 4, ...}
 n(A) = ∞
- Intersection: the set of elements common to both sets

 Example: A = {1, 2, 3, 6}, B = {2, 4, 6}
 A ∩ B = {2, 6}
- **Natural numbers**: {1, 2, 3, 4, 5, ...} Counting numbers
- Not an element: objects that are not in a set o Example:
 A = {1, 2, 3, 4}
 - 7 ∉ *A*
- □ Not a subset: A is not a subset of B if at least one element of A is not an element of B \circ Example: A = {1, 2, 3}, B = {1, 3, 5, 7} A ⊈ B

Proper subset: A is a subset of B and **A is not equal to B**

 \circ Number of proper subsets for a set with *n* elements

• $2^n - 1$ \circ Example: If B = {1, 4, 5}, then all the proper subsets of B are:

$$\{ \} \subset B, \{1\} \subset B, \qquad \{4\} \subset B, \qquad \{5\} \subset B, \qquad \{1,4\} \subset B, \\ \{1,5\} \subset B, \quad \{4,5\} \subset B$$

- Roster method: list of the elements in a set inside a pair of braces { } o
 Example: {Monday, Tuesday, Wednesday} or {1, 2, 3, 4}
- Set: collection of objects

Subset: every element in the first set is also an element in the second set o number of subsets for a set with *n* elements

• 2n• Example: If A = {5, 6, 7}, then all the subsets of A are: {} $\subseteq B$, {5} $\subseteq B$, {6} $\subseteq B$, {7} $\subseteq B$, {5,6} $\subseteq B$, {5,7} $\subseteq B$, {6,7} $\subseteq B$, {5,6, 7} $\subseteq B$

M-S1

 \Box Union: the set of elements that are in set A, or set B, or both sets A and B $_{\odot}$ Cardinal number of the union of two finite sets

• $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ • Example: $A = (1, 2), B = \{2, 3, 4\}$ $A \cup B = \{1, 2, 3, 4\}$

- Universal set: set that contains all the elements being considered
- **Venn diagram**: universal set is represented by a region inside a rectangle, while subsets within the universal set are represented by circles \circ Example:

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, \quad A = \{2, 5, 6, 8\}, \quad B = \{2, 3, 4, 6, 7\}$ $A \cup B = \{2, 3, 4, 5, 6, 7, 8\}, \quad A \cap B = \{2, 6\}$ $A' = \{1, 3, 4, 7, 9\}, \quad B' = \{1, 5, 8, 9\}$

• Word description: words used to describe a set \circ Example: Set A is the set of days of the week.

Fall 2017

M-S1