Radical Numbers

1. Radical Notation: $a^{1 / n}=\sqrt[n]{a}$

Examples:
$25^{1 / 2}$
1)2)
$8^{1 / 3}$
$\sqrt{25}$
$\sqrt{(5 \cdot 5)}$
5
$\sqrt[3]{8}$
$\sqrt[3]{(2 \cdot 2 \cdot 2)}$
2
2. Radical Notation: $\quad a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})_{m}$

Examples:

$8^{4 / 3}$
$(\sqrt[3]{8})^{4}$
1)2)
$(\sqrt[3]{(2 \cdot 2 \cdot 2)})^{4}$
(2) ${ }^{4}$
$2 \cdot 2 \cdot 2 \cdot 2$
16
$9^{3 / 2}$
$(\sqrt{9})^{3}$
$(\sqrt{(3 \cdot 3)})^{3}$
(3) ${ }^{3}$
$3 \cdot 3 \cdot 3$
27
3. Evaluating: $\sqrt[n]{\boldsymbol{a}^{\boldsymbol{n}}}$
a) If \boldsymbol{n} is odd, then $\sqrt[n]{\boldsymbol{a}^{\boldsymbol{n}}}=\boldsymbol{a}$

Example:

$\sqrt[3]{-5^{3}}=-5$
b) If \boldsymbol{n} is even, then $\sqrt[n]{\boldsymbol{a}^{\boldsymbol{n}}}=|\boldsymbol{a}|$

Example:

$\sqrt{-3^{2}}=|-3|=3$
c) If \boldsymbol{a} is positive, then $\sqrt[n]{\boldsymbol{a}^{\boldsymbol{n}}}=\boldsymbol{a}$

Examples:

$$
\sqrt[3]{5^{3}}=5 \quad \text { and } \quad \sqrt[4]{5^{4}}=5
$$

4. Rules for Radicals

a) Product Rule: $\quad \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{ } \quad a b$

The product of two radicals is the radical of the product.
Examples:

1) $\sqrt{5} \cdot \sqrt{45}$
$\sqrt{5 \cdot 45}$
2) $\sqrt[3]{4} \cdot \sqrt[3]{8}$
$\sqrt[3]{4 \cdot 8}$
$\sqrt{5 \cdot 3 \cdot 3 \cdot 5}$
$\sqrt{(3 \cdot 3) \cdot(5 \cdot 5)}$
$\sqrt[3]{(2 \cdot 2 \cdot 2) \cdot 2 \cdot 2}$
$3 \cdot 5$
$2 \sqrt[3]{2 \cdot 2}$
$2 \sqrt[3]{4}$

15
b) Quotient Rule: $\quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad(b \neq 0)$

The radical of a quotient is the quotient of the radicals.

Examples:

1) $\sqrt{\frac{5}{36}}$
$\frac{\sqrt{5}}{\sqrt{36}}$
2) $\begin{aligned} & \sqrt[3]{\frac{25}{27 x^{3}}} \\ & \sqrt[3]{25} \\ & \sqrt[3]{27 x^{3}}\end{aligned}$
$\frac{\sqrt{5}}{\sqrt{(6 \cdot 6)}}$
$\frac{\sqrt{5}}{6}$
$\frac{\sqrt[3]{5 \cdot 5}}{\sqrt[3]{(3 \cdot 3 \cdot 3) \cdot(x \cdot x \cdot x)}}$
$-\quad \begin{aligned} & \sqrt[3]{25} \\ & 3 x\end{aligned}$
c) Power Rule: $\quad \sqrt[m]{\sqrt[n]{a}}=\sqrt[m n]{a}$

The root of the radical of a radical is the product of their roots.

Examples:

1) $\sqrt[4]{\sqrt{12}}$
2) $\sqrt[5]{\sqrt[3]{9}}$
$\sqrt[4 \cdot 2]{12}$
$\sqrt[5 \cdot 3]{9}$

M-R1
a) No factor under the radical can have a higher power than the root.

$$
\sqrt[3]{7^{5}}=\sqrt[3]{7^{3} \cdot 7^{2}}=7 \sqrt[3]{7^{2}}
$$

b) No fractions allowed under the radical.

$$
\sqrt{\frac{2}{25}} \quad \sqrt{-}==\begin{array}{ccc}
\overline{2} & \sqrt{2} & \sqrt{2} \\
25 & \sqrt{25} & 5
\end{array}
$$

c) No radicals allowed in the denominator (rationalize the denominator).

$$
\begin{aligned}
& \sqrt{5 x} \frac{5 x}{\sqrt{12}} \\
& 5 x \\
& \sqrt{\sqrt{4 \cdot 3}} \\
& 5 x \\
& \overline{2 \sqrt{3}} \\
& 2^{-5 x} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\
& 5 x \sqrt{3}= \\
& \frac{2 \sqrt{3} \cdot 3}{5 \sqrt{3} x} \\
& 2 \cdot 3 \\
& 5 \sqrt{3} x
\end{aligned}
$$

