Logarithms

Logarithm Form	Exponent Form				
$log_a x = y$	$a^{y} = x$	- exponent		~	v ~
$ln_e x = y$	$e^{y} = x$	$\iota o g_a x = y$	means	a	y = x
$log_{10}1000 = 3$	$10^3 = 1000$		JUSE		
$log_2 16 = 4$	$2^4 = 16$				
$log_3 3 = 1$	31 = 3				
$log_51 = 0$	$5^0 = 1$				

I. A logarithm is another way to write an exponent.

II. Note: If the base for *log* is left out, it is **understood** to be **10**. The **base** for *ln* is always *e*.

Common Logarithm – <i>log</i>	Natural Logarithm – <i>ln</i>
Note: $log x = log_{10}x$	Note: $ln x = log_e x$

III. Properties of Logarithms:

log		ln
$\log_b xy = \log_b x + \log_b y$	Product Property	ln xy = ln x + ln y
$x \\ log_b = log_b x - log_b y y$	Quotient Property	$ln_{y}^{x} = ln x - ln y$
$log_b x^r = r log_b x$	Power Property	$\ln x^r = r \ln x$
$log_b b^x = x$ $b_{log_b x} = x$	Inverses	$ln e^{x} = x$ $e_{ln x} = x$

Fall 2019

M-L2 IV. Change-of-Base Theorem:

	Formula	Example
log	$\log_a x = \frac{\log_b x}{a} \log_b$	$log_{\pi}9 = \frac{\log 9}{\log \pi} = 1.9194$
ln	$\log_a x = \frac{\ln x}{\ln a}$	$\log_{32} 5 = \frac{\ln 5}{\ln 32} = 0.4644$

V. Property of Logarithms

$\boldsymbol{x} = \boldsymbol{y}$ if and only if	$log_a x = log_a y$
--	---------------------

M-L2