Lines

Formulas:

- Slope-intercept form of a line; where m = slope and b = y-intercept
 y = mx + b
- Standard form of a line; A, B and C are integers with A being positive
 Ax + By = C
- 3. **Point-slope form** of a line; where m = slope and (x_1,y_1) is a given point $\mathbf{y} - y_1 = m(\mathbf{x} - \mathbf{x}_1)$
- 4. Slope formula; where m = slope, and (x_1,y_1) and (x_2,y_2) are two points

$$m = y_2 - y_1$$
$$x_2 - x_1$$

5. **Midpoint formula**; where (x₁,y₁) and (x₂,y₂) are two points; average the x values for the new x value and the y values for the new y value

$$M = (x^{1} + x^{2}, y^{1} + y^{2})$$
2
2
2

6. **Distance formula**; where (x_1, y_1) and (x_2, y_2) are two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Additional Information:

1. A line is **parallel** to another line if their slopes are the same.

Example: if a line has slope of $m = \frac{3}{5}$; a **parallel** line has $m = \frac{3}{5}$

2. A line is **perpendicular** to another line if their slopes are negative reciprocals.

Example: if a line has slope of $m = \frac{3}{5}$; a **perpendicular** line has $m = -\frac{5}{3}$

- 3. To find the **y-intercept**, set x to 0: (0,y)
- 4. To find the **x-intercept**, set y to 0: (**x**,**0**)

Fall 2017

Examples:

1. Write the equation of a line in slope-intercept form given slope of $m = \frac{2}{5}$ and y-intercept of (0,-4)

y = mx + b Formula #1 y = 2x + (-4) $\overline{5}$ y = x - 4Formula #1 Answer 5

2. Write the equation of the above line in standard form.

$$y = \frac{2}{5}x - 4$$

Formula #1
(5)y = (5) $\frac{2}{5}x - (5)4$
5y = 2x - 20
 $\frac{-2x - 2x}{-2x + 5y = -20}$
-1(-2x + 5y) = -1(-20)
 $2x - 5y = 20$
Multiply by -1 so the coefficient of x
is positive
Formula #2 Answer

3. Write the equation of a line in standard form that goes through the points (2,-6) and (-3,4)

First -- find the slope.

 $m = y^{2-y_1}$ Formula #4 $m = \frac{\frac{4-(-6)}{-3-2}}{\frac{4+6}{-5}} = \frac{10}{-5} = -2$ Formula #4

Second -- use the point-slope form and simplify into standard form, using one set of points; (2,-6)

y - y₁= m(x - x₁) Formula #3 y - (-6) = -2(x - 2)Formula #3 y + 6 = -2x + 4-6 - 6y = -2x - 2+2x + 2x2x + y = -2 Formula #2 Answer

4. Write the equation of the above line in slope-intercept form.

$$2x + y = -2$$
Formula #2
$$-2x - 2x$$

$$y = -2x - 2$$
Formula #1 Answer

M-L1

5. Find the midpoint of a line with end points of (5,9) and (-3,7).

$M = (x_1 + x_2, y_1 + y_2)$	Formula #5
2 2	
5 +(- 3) 9 +7	
$M = (\underline{\qquad},)$	Formula #5
2 2	
5-3 16	
M = (2, 2)	
$\frac{2}{16}$	
M = (2, 2)	
$\boldsymbol{M}=(\boldsymbol{1},\boldsymbol{8})$	Answer

6. Find the length of a line with endpoints of (5,1) and (-3,7)

$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Formula #6
$d = \sqrt{(7-1)^2 + (-3-5)^2}$	Formula #6
$d = \sqrt{(6)^2 + (-8)^2}$	
$d = \sqrt{36 + 64}$	
$d = \sqrt{100}$	
d = 10 units	Answer

Parallel and Perpendicular Lines

7. Find the equation of a line **parallel** to 4x + 2y = -8 passing through (2,4)

First -- find the slope by putting standard form into slope-intercept form.

4x + 2y = -8Formula #2 -4x - 4x 2y = -4x - 8 2y - 4x - 8 2y - 4x - 8 y = -2x - 4Formula #1
Therefore m = -2and parallel m = -2Second – use the point-slope form with a **parallel slope of -2** and the given point (2,4)

y - 4 = -2(x - 2)	Formula #3
y - 4 = -2x + 4	
+4 +4	
y = -2x + 8	Formula #1 Answer

M-L1

8. Find the equation of a line **perpendicular** to 3x - 4y = 12 passing through (2,5)

First – find the slope by putting standard form into slope-intercept form.

$$3x - 4y = 12$$

$$= 3x - 3x + 12$$

$$= +$$

$$44$$

$$and perpendicular $m = -$.

$$3$$

Second - use the point-slope form with a **perpendicular slope of** - and

$$3$$

$$y - 5 = -\frac{4}{3}x + \frac{8}{3}$$

$$y - 5 = -\frac{1}{3}x + \frac{1}{3}$$

$$y - 5 = -\frac{1}{3}x + \frac{1}{3}x + \frac{1}{3}$$

$$y - 5 = -\frac{1}{3}x + \frac{1}{3}x + \frac{$$$$

M-L1