Lines

Formulas:

1. Slope-intercept form of a line; where $m=$ slope and $b=y$-intercept

$$
\mathbf{y}=m x+b
$$

2. Standard form of a line; A, B and C are integers with A being positive $A x+B y=C$
3. Point-slope form of a line; where $m=$ slope and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a given point

$$
\mathbf{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

4. Slope formula; where $\mathrm{m}=$ slope, and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are two points

$$
\begin{array}{r}
m=\begin{array}{r}
y_{2}-y_{1} \\
x_{2}-x_{1}
\end{array}, ~
\end{array}
$$

5. Midpoint formula; where ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are two points; average the x values for the new x value and the y values for the new y value

$$
M=\left(x^{1}+x^{2}, y^{1}+y^{2}\right)
$$

22
6. Distance formula; where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two points

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Additional Information:

1. A line is parallel to another line if their slopes are the same.

Example: if a line has slope of $m=\frac{3}{5}$; a parallel line has $m=\frac{3}{5}$
2. A line is perpendicular to another line if their slopes are negative reciprocals.

Example: if a line has slope of $m=\frac{3}{5}$; a perpendicular line has $m=-\frac{5}{3}$
3. To find the \mathbf{y}-intercept, set x to 0 :
($0, \mathrm{y}$)
4. To find the \mathbf{x}-intercept, set y to 0 :

Examples:

1. Write the equation of a line in slope-intercept form given slope of $m=\frac{2}{5}$ and y-intercept of $(0,-4)$

$$
\begin{array}{cl}
y=m x+b \text { Formula \# 1 } y=2 x+(-\mathbf{4}) & \\
\overline{\mathbf{5}} & \\
\mathbf{2} & \text { Formula \# 1 Answer } \\
\boldsymbol{y}=\boldsymbol{x}-\mathbf{4} &
\end{array}
$$

2. Write the equation of the above line in standard form.

$$
\begin{aligned}
y & =\frac{2}{5} x-4 & & \text { Formula \# 1 } \\
(\mathbf{5}) y & =(\mathbf{5}) \frac{2}{5} x-(\mathbf{5}) 4 & & \\
5 y & =\quad 2 x-20 & & \\
\frac{-\mathbf{2 x}}{-2 x+5 y} & =-20 & & \\
-\mathbf{1}(-2 x+5 y) & =-\mathbf{1}(-20) & & \text { Multiply by }-1 \text { so the coefficient of } \mathrm{x} \\
\mathbf{2 x}-\mathbf{5 y} & =\mathbf{2 0} & & \text { Formula \#2 Answer }
\end{aligned}
$$

3. Write the equation of a line in standard form that goes through the points $(2,-6)$ and $(-3,4)$

First -- find the slope.

$$
\begin{array}{ll}
m=y^{2}-y_{1} & \text { Formula \#4 } \\
m=\frac{x_{2}-x_{1}}{-3-2}=\frac{4-(-6)}{-5}=\frac{10}{-5}=-2 & \text { Formula \#4 }
\end{array}
$$

Second -- use the point-slope form and simplify into standard form, using one set of points; $(2,-6)$

$$
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \quad \text { Formula \#3 } \quad y-(-6)=-2(x-2)
$$

Formula \#3

$$
\begin{array}{r}
y+6=-2 x+4 \\
-6 \quad-6 \\
\hline \\
\hline \mathbf{y}=-2 x-2 \\
+\mathbf{2 x} \quad+\mathbf{2 x} \\
\hline \mathbf{2 x + y}=-2
\end{array}
$$

Formula \#2 Answer
4. Write the equation of the above line in slope-intercept form.

$$
\begin{gathered}
2 x+y=-2 \\
-2 x \quad-2 x \\
\hline y=-2 x-2
\end{gathered}
$$

Formula \#2
P0

Formula \# 1 Answer

M-L1
5. Find the midpoint of a line with end points of $(5,9)$ and $(-3,7)$.

$$
\begin{array}{ll}
M=\left(\begin{array}{ll}
x_{1}+x_{2}, y_{1}+y_{2} \\
2 & 2 \\
5+(-3) & \text { Formula \#5 } \\
M & =\left(\frac{5}{2} \frac{2}{2}\right)
\end{array}\right. & \text { Formula \#5 } \\
M & =\left(\frac{5-3}{2}, \frac{16}{2}\right) \\
M & =\left(\frac{2}{2}, \frac{16}{2}\right) \\
M & =(\mathbf{1}, \mathbf{8})
\end{array}
$$

6. Find the length of a line with endpoints of $(5,1)$ and $(-3,7)$

$$
\begin{aligned}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { Formula \#6 } \\
d=\sqrt{(\mathbf{7}-\mathbf{1})^{2}+(-\mathbf{3}-\mathbf{5})^{2}} & \text { Formula \#6 } \\
d=\sqrt{(6)^{2}+(-8)^{2}} & \\
d=\sqrt{36+64} & \\
d=\sqrt{100} & \text { Answer }
\end{aligned}
$$

Parallel and Perpendicular Lines

7. Find the equation of a line parallel to $4 x+2 y=-8$ passing through $(2,4)$

First -- find the slope by putting standard form into slope-intercept form.

$$
\begin{aligned}
& 4 x+2 y=-8 \\
& \frac{-4 x \quad-4 x}{2 y}=-4 x-8
\end{aligned}
$$

$$
\underline{2 y} \quad \underline{-4 x} \quad \underline{8}
$$

$=-222$

$$
y=-2 x-4
$$

Formula \# 1
Therefore $\boldsymbol{m}=\mathbf{- 2}$ and parallel $m=\mathbf{- 2}$

Second - use the point-slope form with a parallel slope of $\mathbf{- 2}$ and the given point $(2,4)$

$y-4=-2(x-2)$	Formula \#3
$y-4=-2 x+4$	
$+\mathbf{4}+\mathbf{4}$	Formula \# 1 Answer

8. Find the equation of a line perpendicular to $3 x-4 y=12$ passing through $(2,5)$

First - find the slope by putting standard form into slope-intercept form.

$$
\begin{gathered}
3 x-4 y=12 \\
-4 y=-3 x+12 \\
=+\quad \frac{-\mathbf{3 x}}{-3 x+3 x} \underline{12}- \\
\\
\\
\end{gathered}
$$

Formula \#2

Formula \# 1
3
Therefore $\boldsymbol{m}=$ 44
and perpendicular $\boldsymbol{m}=$ - $_{\text {- }}$
3

4
Second - use the point-slope form with a perpendicular slope of - and
the given point $(2,5)$

Fall 2017

M-L1

