Interest Formulas

- A is P percent of B :

$$
\begin{align*}
& \circ \quad \begin{array}{l}
\mathrm{A}=\mathrm{PB} \\
\frac{i s}{i s}=\% \\
\text { of } \quad 100
\end{array}
\end{align*}
$$

- Simple Interest:
- $i=$ Prt
- $\mathrm{A}=\mathrm{P}+\mathrm{Prt}$
-

$$
\mathrm{A}=\mathrm{P}(1+\mathrm{rt})
$$

- Compound Interest:

$$
\circ A=P\left(1+{ }^{r}\right)_{n t}^{n t}
$$

- Continuously Compounding Interest: $\circ A=P e^{r t}$
- Effective Annual Yield:

$$
=(1+)-1{ }_{n}^{r n \circ Y}
$$

\square Annuities:

$$
\begin{aligned}
& \circ A=\overbrace{}^{\substack{\text { PMT }\left([1+)^{n t}\right.}}-1] \\
& \text { () } \\
& { }_{A(}{ }^{r} \\
& \text { ○ PMT }=\overbrace{[(1+)-1] n} n_{n t}^{n}
\end{aligned}
$$

- Loans:

$$
\circ P M T=\frac{P^{P()^{r}}}{[1-(1+)}{ }^{n} r-n t
$$

Variable definitions:

- $\mathrm{A}=$ future value $\quad \square \mathrm{PMT}=$ payment
- $\mathrm{P}=$ present value $\square \mathrm{Y}=$ yield as a decimal
- $i=$ interest $\quad \mathrm{e}=$ base of \ln
- $r=$ interest rate as a decimal $\square \mathrm{n}=$ number of compounding
- $t=$ time in years periods per year

Fall 2017

