Geometric Formulas

Square:	Perimeter: $\quad P=4 s$
Area: $\quad A=s^{2}$	\quad ss $\quad \square$ s

$$
\begin{array}{ll}
\text { Rectangle: } & \text { Perimeter: } \quad P=2 l+2 w \\
\text { Area: } A=l w
\end{array}
$$

Parallelogram:	Perimeter: $\quad P=2 a+2 b$
	Area: $\quad A=b h$

b

Trapezoid:
Perimeter: $\quad P=a+b+c+B$
Area: $\quad A=\frac{1}{2} h(b+B)$

Triangle:
Perimeter: $\quad P=a+b+c$
Area: $\quad A=\frac{1}{2} b h$

b

Right Triangle: Pythagorean Theorem:

$$
a^{2}+b^{2}=c^{2}
$$

b

$$
\text { Circle: } \quad \begin{aligned}
& \text { Diameter: } \quad d=2 r \\
& d \\
& r \\
& \text { Circumference: } C=\pi \\
& C=2^{\pi} r
\end{aligned}
$$

Area: $\quad A=\pi r^{2}$
*Use 3.14 as the approximate value of π
Spring 2019

Cube: Volume: $\quad V=e^{3}$

Surface Area: $S=6 e^{2}$
e

Rectangular Solid: \quad Volume: $\quad V=l w h$
Surface Area:

$$
S=2 l w+2 l h+2 w h
$$

Right Circular Cylinder:
Volume:
Surface Area:
$h \quad B$ is the area of the base or $B=\pi r^{2}$.

$$
S=2 \pi r h+2 \pi r^{2}
$$

Pyramid:
Volume: $V=\frac{1}{3} B h$
B is the area of the base.

Surface Area: $S=4 \pi r^{2}$

